网络中的网络(NiN)#
LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。 AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。 或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。 网络中的网络(NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机
NiN块#
回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。 另外,全连接层的输入和输出通常是分别对应于样本和特征的二维张量。 NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。 如果我们将权重连接到每个空间位置,我们可以将其视为\(1\times 1\)卷积层,或作为在每个像素位置上独立作用的全连接层。 从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。
下图说明了VGG和NiN及它们的块之间主要架构差异。 NiN块以一个普通卷积层开始,后面是两个\(1 \times 1\)的卷积层。这两个\(1 \times 1\)卷积层充当带有ReLU激活函数的逐像素全连接层。 第一层的卷积窗口形状通常由用户设置。 随后的卷积窗口形状固定为\(1 \times 1\)。
卷积后第一个全连接层的参数:
LeNet:16x5x5x120=48K
AlexNet:256x5x5x4096=26M
VGG:512x7x7x4096=102M
import torch
from torch import nn
from d2l import torch as d2l
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
NiN模型#
最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。 NiN使用窗口形状为\(11\times 11\)、\(5\times 5\)和\(3\times 3\)的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为\(3\times 3\),步幅为2。
NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
# 标签类别数是10
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
# 将四维的输出转成二维的输出,其形状为(批量大小,10)
nn.Flatten())
我们创建一个数据样本来查看每个块的输出形状。
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 96, 54, 54])
MaxPool2d output shape: torch.Size([1, 96, 26, 26])
Sequential output shape: torch.Size([1, 256, 26, 26])
MaxPool2d output shape: torch.Size([1, 256, 12, 12])
Sequential output shape: torch.Size([1, 384, 12, 12])
MaxPool2d output shape: torch.Size([1, 384, 5, 5])
Dropout output shape: torch.Size([1, 384, 5, 5])
Sequential output shape: torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape: torch.Size([1, 10, 1, 1])
Flatten output shape: torch.Size([1, 10])
训练模型#
和以前一样,我们使用Fashion-MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。
#train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=128, resize=224)
#下载模型使用
import os
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms,datasets
import matplotlib.pyplot as plt
image_size = 224
data_transform = transforms.Compose([
#transforms.ToPILImage(), # 将torch.Tensor或numpy.ndarray类型图像转为PIL.Image类型图像。这段里面可以移除transforms.ToPILImage(),因为 FashionMNIST 数据集已经是 PIL.Image 类型
transforms.Resize(image_size),#按给定尺寸对图像进行缩放
transforms.ToTensor() #将PIL.Image或numpy.ndarray类型图像转为torch.Tensor类型图像
])
# train表示是否是训练集,download表示是否需要下载,transform表示是否需要进行数据变换
train_data = datasets.FashionMNIST(root='../raw/data/', train=True, download=True, transform=data_transform)
test_data = datasets.FashionMNIST(root='../raw/data/', train=False, download=True, transform=data_transform)
batch_size = 128
num_workers = 0 #mac 不知道为什么变为4也报错 # 对于Windows用户,这里应设置为0,否则会出现多线程错误
# DataLoader是一个用于生成batch数据的迭代器,可以设置batch_size、shuffle、num_workers等参数
#batch_size是指每个批次中包含的样本数量。shuffle=True表示在每个epoch开始时,将训练数据集打乱顺序,以增加模型的泛化能力。num_workers是指用于数据加载的线程数量,可以加快数据加载的速度。drop_last=True表示如果训练数据集的样本数量不能被batch_size整除,最后一个不完整的批次将被丢弃。
train_iter = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
test_iter = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=num_workers)
lr, num_epochs = 0.1, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.869, train acc 0.688, test acc 0.683
1754.4 examples/sec on cuda:0