汇聚层#
通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。
最大汇聚层和平均汇聚层#
与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为汇聚窗口)遍历的每个位置计算一个输出。 然而,不同于卷积层中的输入与卷积核之间的互相关计算,汇聚层不包含参数。 相反,池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。
在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。
上图中的输出张量的高度为\(2\),宽度为\(2\)。这四个元素为每个汇聚窗口中的最大值:
汇聚窗口形状为\(p \times q\)的汇聚层称为\(p \times q\)汇聚层,汇聚操作称为\(p \times q\)汇聚。
回到本节开头提到的对象边缘检测示例,现在我们将使用卷积层的输出作为\(2\times 2\)最大汇聚的输入。
设置卷积层输入为X
,汇聚层输出为Y
。
无论X[i, j]
和X[i, j + 1]
的值相同与否,或X[i, j + 1]
和X[i, j + 2]
的值相同与否,汇聚层始终输出Y[i, j] = 1
。
也就是说,使用\(2\times 2\)最大汇聚层,即使在高度或宽度上移动一个元素,卷积层仍然可以识别到模式。
在下面的代码中的pool2d
函数,我们实现汇聚层的前向传播。
这类似于《图像卷积》中的corr2d
函数。
然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。
import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
/Users/ascotbe/anaconda3/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: 'dlopen(/Users/ascotbe/anaconda3/lib/python3.10/site-packages/torchvision/image.so, 0x0006): Symbol not found: __ZN3c1017RegisterOperatorsD1Ev
Referenced from: <6A7076EE-85BD-37A7-BC35-1D4867F2B3D3> /Users/ascotbe/anaconda3/lib/python3.10/site-packages/torchvision/image.so
Expected in: <A84DFEFF-287E-3B94-A7DB-731FA5F9CBBC> /Users/ascotbe/anaconda3/lib/python3.10/site-packages/torch/lib/libtorch_cpu.dylib'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
warn(
我们可以构建上图中的输入张量X
,验证二维最大汇聚层的输出。
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],
[7., 8.]])
此外,我们还可以验证平均汇聚层。
pool2d(X, (2, 2), 'avg')
tensor([[2., 3.],
[5., 6.]])
填充和步幅#
与卷积层一样,汇聚层也可以改变输出形状。和以前一样,我们可以通过填充和步幅以获得所需的输出形状。
下面,我们用深度学习框架中内置的二维最大汇聚层,来演示汇聚层中填充和步幅的使用。
我们首先构造了一个输入张量X
,它有四个维度,其中样本数和通道数都是1。
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
tensor([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]]])
默认情况下,深度学习框架中的步幅与汇聚窗口的大小相同。
因此,如果我们使用形状为(3, 3)
的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)
。
pool2d = nn.MaxPool2d(3)
pool2d(X)
tensor([[[[10.]]]])
填充和步幅可以手动设定。
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5., 7.],
[13., 15.]]]])
当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
tensor([[[[ 5., 7.],
[13., 15.]]]])
多个通道#
在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。
这意味着汇聚层的输出通道数与输入通道数相同。
下面,我们将在通道维度上连结张量X
和X + 1
,以构建具有2个通道的输入。
X = torch.cat((X, X + 1), 1)
X
tensor([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]],
[[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[13., 14., 15., 16.]]]])
如下所示,汇聚后输出通道的数量仍然是2。
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5., 7.],
[13., 15.]],
[[ 6., 8.],
[14., 16.]]]])