深度学习中的轴/axis/dim全解

深度学习中的轴/axis/dim全解#

在深度学习中,轴,指的就是张量的层级,一般通过参数axis/dim来设定。很多张量的运算、神经网络的构建,都会涉及到轴,但到底取哪个轴,却不是那么容易把握。

下面会针对轴/axis/dim,基于 Pytorch 的代码和实例,尝试去理清张量运算中轴/axis/dim的设定。

轴的概念#

对于一个张量,它的shape有几维,就对应有几个轴,也就对应着张量的层级,最直观的可以通过看最前面的方括号数量来判断。

import torch
a = torch.Tensor([[1,2,3], [4,5,6]])
b = torch.Tensor([[7,8,9], [10,11,12]])
c = torch.Tensor([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]])
print(a.shape)
torch.Size([2, 3])

上面的张量 a 和 b,都对应两个轴。axis/dim=0 对应 shape [2, 3] 中的2,axis/dim=1 对应 shape [2, 3] 中的3,而张量 c 有三个轴。

张量运算时对轴参数的设定非常常见,在 Numpy 中一般是参数axis,在 Pytorch 中一般是参数dim,但它们含义是一样的。

轴的使用#

在做张量的拼接操作时,axis/dim设定了哪个轴,那对应的轴在拼接之后张量数会发生变化

d=torch.cat((a,b), dim=0)
print(d)

e=torch.cat((a,b), dim=1)
print(e)
tensor([[ 1.,  2.,  3.],
        [ 4.,  5.,  6.],
        [ 7.,  8.,  9.],
        [10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  7.,  8.,  9.],
        [ 4.,  5.,  6., 10., 11., 12.]])

对于上面torch中的cat操作,当设定dim=0时,两个维度是(2,3)的张量合并成了一个(4,3)的张量,在第0维,张量数从2变成了4,第1维没有变化;当设定dim=1时,在第1维,张量数从3变成了6,第0维没有变化。

在做张量的运算操作时,axis/dim设定了哪个轴,就会遍历这个轴去做运算,其他轴顺序不变

f=torch.softmax(a, dim=0)
print(f)
g=torch.softmax(a, dim=1)
print(g)
tensor([[0.0474, 0.0474, 0.0474],
        [0.9526, 0.9526, 0.9526]])
tensor([[0.0900, 0.2447, 0.6652],
        [0.0900, 0.2447, 0.6652]])

对于上面torch中的 softmax 操作,当设定 dim=0 时,就是其他轴不变,单次遍历 dim=0 轴的所有元素去做运算,上例中就相当于分别取了张量a中的第0列、第1列、第2列去做计算。

换一个角度,假设用for循环去遍历一个张量,那运算中设定的dim就是被放在最内层的for循环,其它的轴保持正常的顺序。

可以用下面的例子作为验证,这里tensor c 的shape 是 (m,n,p),用for循环去计算 torch.softmax(c, dim=1)

# for循环计算方式
z = torch.Tensor([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]])   # shape (2,2,3)
m,n,p = z.shape
res = torch.zeros((m,n,p))
for i in range(m):
    for j in range(p):
        res[i,:,j] = torch.softmax(torch.tensor([z[i,k,j] for k in range(n)]), dim=0)  #这里对应最内层的for循环

# 库函数设定轴计算方式
res1 = torch.softmax(z, dim=1)
print(res.equal(res1))      # True
True

axis/dim使用小总结:

  1. 在做张量的拼接操作时,axis/dim设定了哪个轴,那对应的轴在拼接之后张量数会发生变化

  2. 在做张量的运算操作时,axis/dim设定了哪个轴,就会遍历这个轴去做运算,其他轴顺序不变

实际上,第一条拼接操作也可以用第二条去理解,但拼接的轴张量数会发生变化更好理解和记忆。

轴的实例#

其实一个轴设定的变化,会带来很大的差异,最典型的就是 BatchNorm 和 LayerNorm 了。

BatchNorm 和 LayerNorm 是针对数据的不同轴去做norm,假设输入数据的维度是(N,H,W,C),分别对应batch数,高,宽,通道数,BatchNorm 就对应dim=0,LayerNorm 就对应dim=-1,在不考虑移动平均等具体细节问题时,两者在形式上可以统一,只有一个dim参数的差别。

Pytorch 的实现(简化版)如下:

class Norm(nn.Module):
    def __init__(self, num_features, variance_epsilon=1e-12):
        super(Norm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(num_features))
        self.beta = nn.Parameter(torch.zeros(num_features))
        self.variance_epsilon = variance_epsilon    # 一个很小的常数,防止除0

    def forward(self, x, dim):
        u = x.mean(dim, keepdim=True)
        s = (x - u).pow(2).mean(dim, keepdim=True)
        x_norm = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.gamma * x_norm + self.beta
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[5], line 1
----> 1 class Norm(nn.Module):
      2     def __init__(self, num_features, variance_epsilon=1e-12):
      3         super(Norm, self).__init__()

NameError: name 'nn' is not defined