什么是微调

什么是微调#

深度学习领域中常见的一种技术,用于将预先训练好的模型适配到特定的任务或数据集上。这个过程包括几个主要步骤:

  • 基础模型选择:选择一个通用文本数据的基础语言模型,使其能够理解基本的语言结构和语义。

  • 准备训练数据集:选择一个与目标任务相关的较小数据集。

  • 微调:在此数据集上训练模型,但通常使用较低的学习率,以保留基础模型学到的知识,同时学习目标任务的特定知识。

  • 评估:在目标任务的验证集上评估模型的性能,需要准备评估数据集。

  • 应用:如果性能满意,则可以将模型应用于实际任务。

目前的微调策略#

  • LoRA:LoRA 是一种用于微调大型语言模型的技术,通过低秩近似方法降低适应数十亿参数模型(如 GPT-3)到特定任务或领域的计算和财务成本。

  • QLoRA:QLoRA 是一种高效的大型语言模型微调方法,它显著降低了内存使用量,同时保持了全 16 位微调的性能。它通过在一个固定的、4 位量化的预训练语言模型中反向传播梯度到低秩适配器来实现这一目标。

  • PEFT:PEFT 是一种 NLP 技术,通过仅微调一小部分参数,高效地将预训练的语言模型适应到各种应用,降低计算和存储成本。它通过调整特定任务的关键参数来对抗灾难性遗忘,并在多种模式(如图像分类和稳定扩散梦展台)中提供与全微调相当的性能。这是一种在最少的可训练参数情况下实现高性能的有价值方法。

常见的微调框架#